

i

연구요약

제1	장 서론	3
제1	I절 연구배경 및 목적······	3
1.	연구의 배경	3
2.	연구의 목적·····	4
제2	2절 연구범위 및 방법	6
1.	연구의 범위	6
2.	연구 방법	8

제2장 기후변화 현황	1
제1절 기후현황 분석	11
1. 우리나라 기후현황	11
2. 강원도 기후현황······	12
제2절 개최지 주변 기후현황	14
제3절 개최지 주변 기후변화 분석	28
1. 개최지 주변지역 계절변화	28
2. 올림픽 기간 기후변화 영향	30
3. 강릉지역의 기후 계절 변화	32

제4절 기후변화 인식조사	33
1. 설문 조사 방법	33
2. 인식조사 결과	37

제3장 기후변화 전망 49	
제1절 기후변화 시나리오	
제2절 신기후변화 시나리오	
제3절 개최지 주변 기후변화 시나리오 전망 63	
1. 국가기후변화 시나리오에 따른 전망 63	
2. SRES 시나리오 활용	

제4장 동계올림픽 환경계획
제1절 과거 올림픽 사례
제2절 평창동계올림픽 환경계획
1. 신재생 에너지 분야
2. 건축(경기장) 분야
3. Green IT 분야
4. 교통 및 수송 분야
5. 물·자원 순환 분야
6. Carbon Share Promotion 분야
7. 기타 분야

제5장 개최지 주변 기후 모델링	
제1절 WRF 수치모형	
1. WRF 수치모형의 개요	
2. 격자체계	
3. 토지이용도	
4. WRF 모델의 활용 예	
제2절 모델링 실행	

ii

목차 iii

1	. 모델링 영역 및 대상기간	115
2	. 물리적 옵션 적용	116
3	. 토지이용도의 변화	117
제(3절 모델 결과	118
1.	시계열	118
2.	수평분포	119
3.	기후모델링의 필요성	120

제6장 기후모니터링 방법	3
제1절 기후모니터링	23
1. 기상 모니터링	23
2. 이산화탄소 모니터링	27
제2절 기후관련 동계올림픽 지원 계획 조사	30
제3절 모니터링 위치선정 방법론 개발	36
1. 기후 모니터링 기준 및 기후지수 조사	36
2. 모니터링 위치 선정기준 및 방법론	38

제7장	결론 및	정책제언	47
제1절	결론		147
제2절	정책제언·		149

참고문헌	5	5	1
------	---	---	---

<표 2.1 > 강원도 평년 기후(1981-2010)
<표 2.2> 대관령 기상대 10년 평균 기온과 누적 강수량
<표 2.3> 강릉 기상대 10년 평균 기온과 누적 강수량
<표 2.4> 대관령 2월의 10년 평균 기온과 누적 강수량
<표 2.5> 강릉 2월의 10년 평균 기온과 누적 강수량
<표 2.6> 대관령 3월의 10년 평균 기온과 누적 강수량
<표 2.7> 강릉 3월의 10년 평균 기온과 누적 강수량
<표 2.8> 평창 주변 AWS의 2000년대 평균 기온과 누적 강수량
<표 2.9> 강릉 주변 AWS의 2000년대 평균 기온과 누적 강수량
<표 2.10> 사계절 분류 기준
<표 2.11> 평창과 강릉의 계절 변화
<표 3.1> IPCC 발간 기후변화 평가보고서
<표 3.2> 온실가스 배출시나리오의 배출인자별 특성 비교(Tar)
<표 3.3> 기존 기후변화 시나리오 비교
<표 3.4> 전지구 및 한반도 기후변화 전망
<표 3.5> 기후변화정보센터 제공 RCP시나리오 현황
<표 3.6> 대관령 지점의 RCP 시나리오에 의한 10년 평균 기온과 강수량 64
<표 3.7> 강릉 지점의 RCP 시나리오에 의한 10년 평균 기온과 강수량65
<표 3.8> 대관령 지점의 RCP 시나리오에 의한 2월의 10년 평균 기온과 강수량 … 67
<표 3.9> 강릉 지점의 RCP 시나리오에 의한 2월의 10년 평균 기온과 강수량 67
<표 3.10> 대관령 지점의 RCP 시나리오에 의한 3월의 10년 평균 기온과 강수량 ··69
<표 3.11> 강릉 지점의 RCP 시나리오에 의한 3월의 10년 평균 기온과 강수량 69

목차 V

<표 3.12> 통계적 축소법과 동적 축소법의 장단점
<표 4.1> 2006 토리노동계올림픽 대회운영에서 발생한 이산화탄소배출량 (예측)83
<표 4.2> HECTOR 프로젝트에서 확보한 탄소배출권 현황 (2006년 4월 현재) 84
<표 4.3> 2010 밴쿠버동계올림픽 대회운영에서 발생한 이산화탄소배출량 (예측) 86
<표 4.4> 분야별 온실가스감축 목표
<표 5.1> USGS 와 KME의 토지이용도 분류 비교
<표 6.1> 관측센서 형식 및 내용
<표 6.2> 대표적 기후지수
<표 6.3> 쌍대비교 값
<표 6.4> 쌍대비교 행렬 구성
<표 6.5> N×N 쌍대비교행렬에서 무작위지수

목 차 vii

<그림 1.1> 연구의 공간적 범위6
<그림 1.2> 연구추진 체계
<그림 2.1> 우리나라 기후도(1981-2010)
<그림 2.2> 평창과 강릉에 위치한 기상대 지점과 AWS 지점
<그림 2.3> 대관령 기상대 지점의 연평균기온과 누적 강수량
<그림 2.4> 강릉 기상대 지점의 연평균기온과 누적 강수량
<그림 2.5> 대관령 기상대 지점의 2월 평균 기온과 누적 강수량
<그림 2.6> 강릉 기상대 지점의 2월 평균 기온과 누적 강수량
<그림 2.7> 대관령 기상대 지점의 3월 평균 기온과 누적 강수량
<그림 2.8> 강릉 기상대 지점의 3월 평균 기온과 누적 강수량
<그림 2.9> 평창지역 AWS 지점의 평균기온
<그림 2.10> 평창지역 AWS 지점의 최고기온
<그림 2.11> 평창지역 AWS 지점의 최저기온
<그림 2.12> 평창지역 AWS 지점의 강수량
<그림 2.13> 강릉지역 AWS 지점의 평균기온
<그림 2.14> 강릉지역 AWS 지점의 최고기온
<그림 2.15> 강릉지역 AWS 지점의 최저기온
<그림 2.16> 강릉지역 AWS 지점의 강수량
<그림 2.17> 개최지 주변 계절 변화
<그림 2.18> 대관령과 강릉의 2월 기후변화
<그림 2.19> 대관령과 강릉 3월 기후변화
<그림 2.20> 강릉지역 기후 계절 변화

<그림 2.21> 응답자 현황
<그림 2.22> 연령 분포
<그림 2.23> 응답자 학력
<그림 2.24> 관련 교육참석 여부
<그림 2.25> 응답자 직업분류
<그림 2.26> 기후변화 문제 인지 여부
<그림 2.27> 기후변화 위험 인지 여부
<그림 2.28> 기후변화 문제 인지 경로
<그림 2.29> 분야별 기후변화 영향 인지 40
<그림 2.30> 기후변화 진행 인지정도
<그림 2.31> 기후변화 영향에 의한 생활고 여부
<그림 2.32> 기후변화 피해 예상 정도
<그림 2.33> 지역 기후변화 대응을 위한 지자체 필요 정책 42
<그림 2.34> 환경올림픽 계획에 대한 인지여부43
<그림 2.35> 올림픽 개최가 기후변화에 미치는 영향 44
<그림 2.36> 환경올림픽의 지역적 영향인지 44
<그림 2.37> 환경올림픽계획의 전지구적 영향45
<그림 2.38> 올림픽계획의 환경과 경제 중심 판단 45
<그림 3.1> SRES 시나리오 개요
<그림 3.2> 시나리오별 지표온도 상승 전망
<그림 3.3> IPCC 평가 보고서 세대별 지리적 해상도 특징
<그림 3.4> 신시나리오에 따른 전망
<그림 3.5> RCP 시나리오별 이산화 탄소 배출량 추이60
<그림 3.6> 기후변화 시나리오 산출과정
<그림 3.7> 대관령 지점의 RCP 시나리오에 의한 기온과 강수량63
<그림 3.8> 강릉 지점의 RCP 시나리오에 의한 기온과 강수량
<그림 3.9> 대관령 지점의 RCP 시나리오에 의한 2월 기온과 강수량66
<그림 3.10> 강릉 지점의 RCP시나리오에 의한 2월 기온과 강수량
<그림 3.11> 대관령지점의 RCP 시나리오에 의한 3월 기온과 강수량68

<그림 3.12> 강릉 지점의 RCP 시나리오에 의한 3월 기온과 강수량
<그림 3.13> DAI Portal에서 제공하는 GCM 격자
<그림 3.14> 한반도 주변 GCM 지점
<그림 3.15> SDSM 초기화면
<그림 3.16> SDSM 상세화 과정
<그림 4.1> 동계올림픽 대회의 기후변화대응 목표 및 전략80
<그림 4.2> 2002 솔트레이크동계올림픽 시설(유타올림픽오벌)
<그림 4.3> 2010 밴쿠버올림픽 빌리지
<그림 4.4> 2010밴쿠버동계올림픽 기간 동안 실시간 모니터링 대상 건물 88
<그림 4.5> 탄소배출 실시간 모니터링 예
<그림 4.6> 2018평창 동계올림픽 슬로건
<그림 4.7> 2018평창 동계올림픽 경기장
<그림 4.8> Green Dream: O ₂ Plus Winter Games 개념
<그림 4.9> 신재생 에너지 분야 목표
<그림 4.10> 신재생에너지 분야 사업별 로드맵
<그림 4.11> 건축 분야 Concept Design
<그림 4.12> 건축 분야 사업별 로드맵
<그림 4.13> Green IT 분야 Concept Design
<그림 4.14> Green IT 분야 사업별 로드맵
<그림 4.15> 교통 및 수송 분야 Concept Design
<그림 4.16> 교통 및 수송 분야 사업별 로드맵
<그림 4.17> 물·자원 순환 분야 Concept Design
<그림 4.18> 물·자원 순환 분야 사업별 로드맵
<그림 4.19> Carbon Share Promotion 분야 Concept Design
<그림 4.20> Carbon Share Promotion 분야 사업별 로드맵
<그림 5.1> WRF Modeling system 흐름도
<그림 5.2> WRF 수직 및 수평 격자체계
<그림 5.3> 여러 격자를 이용한 다양한 둥지 격자 구성
<그림 5.4> WRF의 수직 좌표109

<그림 5.5 > 수직 좌표 시스템의 비교
<그림 5.6> WRF 모델 활용 사례1
<그림 5.7> WRF 모델 활용사례2
<그림 5.8> 모델링 도메인 영역(3km, 1km)
<그림 5.9> Parameterizations의 직접적인 상호작용
<그림 5.10> 강릉지역의 토지이용도 변화
<그림 5.11> 강릉지역 개발 전 · 후 기온 모사결과 시계열
<그림 5.12> 강릉지역 개발 전 · 후 기온 모사결과 수평분포
<그림 6.1> 자동기상관측 장비(Automatics Weather System; AWS) 124
<그림 6.2> 소형 기후기록장치(HOBO)
<그림 6.3> 휴대용 온·습도 측정기
<그림 6.4> 통합기상관측장비(WXT510)의 구조
<그림 6.5> 비분산적외선분석계의 구조
<그림 6.6> 휴대용 이산화탄소 측정기
<그림 6.7> AHP 분석과정
<그림 6.8> 분석을 위한 계층구조

Х