목차

연구요약 ~		v	i	ĺ
--------	--	---	---	---

ズ	∥1장 서 론	1
	제1절 연구의 배경 및 목적	• 3
	제2절 연구의 범위 및 방법	· 5
	1. 연구의 범위	• 5
	2. 연구의 내용	۰6
	3. 연구의 추진체계	• 7

	·	전 현황	풍력털	제2장
황······1;	현황	풍력발전	절 세계	제1졑
황1	현황	풍력발전	절 국내	제2졑
년정책	지원정책	뱅에너지 기	절 신재⁄	제3졑
구화제도(RPS)1	의무화제도(RPS)	너지공급.	신재생여	1.
ed-in Tariff)24	(Feed-in Tariff)	백지원제도(발전차여	2.
지원제도	이 지원제도	재생에너ㅈ	기타 신	3.

제1절 노후화 설비 교체의 기술적 타당성	26
제2절 노후화 설비 교체의 정책적 타당성	30
1. 2018평창동계올림픽 신재생에너지 생산 약속이행	30
2. RPS 의무이행	31

제1절 전력수급기본계획과 WASP
1. 전력수급기본계획
2. WASP모형
제2절 SMP 예측 모형
1. 전력시장제도와 전력가격(SMP) 44
2. 모형운용 결과

제1절	경제성	분석	입력	 79
제2절	경제성	분석	결과	 84

제6장	결론		93	3
-----	----	--	----	---

찬 7	1문허	 g	9
ㅋㅗ		7	7

표목차

[표	2-1]	연도별 신재생에너지 생산량	5
[표	2-2]	연도별 신재생에너지 공급의무비율	3
[표	2-3]	신재생에너지원별 REC 가중치	9
[표	3-1]	2012년 신재생에너지 공급의무 이행실적	1
[표	3-2]	신재생공급의무회사별 공급의무량 부과현황	2

- [표 4-2] 제6차 전력수급계획 상의 전력수요 전망 …………………………………………… 49

i∨ 대관령풍력발전 노후화 설비 교체 타당성 분석

<그림	1-1>	대관령풍력발전 전력생산량 및 비용편익 추이 ···································	ł
<그림	1-2>	연구의 추진체계	7

<그림	2-1>	풍력발전기의 구조 및 구성품	11
<그림	2-2>	전세계 풍력발전기 설치용량	12
<그림	2-3>	전세계 풍력발전 설치용량 상위 10개국	13
<그림	2-4>	상업용 중대형 풍력터빈 크기의 변화	14
<그림	2-5>	지역별 풍력발전기 보급현황	16
<그림	2-6>	RPS제도 하에서 신재생에너지 사업의 구조	18
<그림	2-7>	발전차액지원제도 개요	20

<그림	3-1>	대관령풍력단지 위치	25
<그림	3-2>	대관령풍력발전 월간 전력생산 현황	26
<그림	3-3>	2010년 시간대별 전력생산 패턴	27
<그림	3-4>	2011년 시간대별 전력생산 패턴	28
<그림	3-5>	2012년 시간대별 전력생산 패턴	28
<그림	3-6>	대관령풍력단지 국산 풍력발전기 교체안	29
<그림	3-7>	REC 가격 추이	33

<그림	4-1>	전력수급기본계획 수립과정
<그림	4-2>	심사곡선법(Screening Curve Method) 40
<그림	4-3>	월평균 SMP 현황

<그림 4-4> LNG의 SMP 결정비율
<그림 4-5> 우리나라 전력부하 패턴
<그림 4-6> 전력수요 전망
<그림 4-7> 시나리오별 제6차 전력수급기본계획 이후 발전소 건설계획57
<그림 4-8> 시나리오별 전력계통 전원구성비
<그림 4-9> 시나리오별 전력생산량
<그림 4-10> 시나리오별 연간 CO ₂ 배출전망
<그림 4-11> 시나리오별 비용전망
<그림 4-12> CBP시장의 SMP 발전기 결정방식
<그림 4-13> 확률적 시뮬레이션에서 고장정지의 처리방식
<그림 4-14> 등가부하지속곡선 (ELDC)
<그림 4-15> 확률적 시뮬레이션 처리과정
<그림 4-16> 연료별 SMP 결정비율 - No Constraint 시나리오
<그림 4-17> SMP 지속곡선 - No Constraint 시나리오
<그림 4-18> 시간대별 SMP - No Constraint 시나리오
<그림 4-19> 연간 시간대별 SMP - No Constraint 시나리오
<그림 4-20> SMP 실적 및 전망 - No Constraint 시나리오
<그림 4-21> 월평균 SMP 실적 및 예측 - No Constraint 시나리오 70
<그림 4-22> 연평균 SMP 실적 및 예측 - No Constraint 시나리오70
<그림 4-23> 연료별 SMP 결정비율 - No Nuke 시나리오71
<그림 4-24> 월평균 SMP 실적 및 예측 - No Nuke 시나리오
<그림 4-25> 연평균 SMP 실적 및 예측 - No Nuke 시나리오
<그림 4-26> 연료별 SMP 결정비율 - 8 Nukes 시나리오
<그림 4-27> 월평균 SMP 실적 및 예측 - 8 Nukes 시나리오
<그림 4-28> 연평균 SMP 실적 및 예측 - 8 Nukes 시나리오
<그림 4-29> 연료별 SMP 결정비율 - NAP 시나리오

vi 대관령풍력발전 노후화 설비 교체 타당성 분석

<그림 5-1> 시나리오별 연평균 SMP 실적 및 전망80
<그림 5-2> 시나리오별 월평균 SMP 실적 및 전망80
<그림 5-3> REC 거래가격 추이
<그림 5-4> 대관령 풍력발전 월별 이용률 현황 ······ 83
<그림 5-5> REC 가격에 따른 시나리오별 경제성 - 2015년 6MW85
<그림 5-6> REC 가격에 따른 시나리오별 경제성 - 2015년 3MW85
<그림 5-7> 불확실성이 존재할 경우 투자방법 - 기회비용 접근법 86
<그림 5-8> REC가격 불확실성 하의 투자결정 - 정부지원 없을 경우 88
<그림 5-9> REC가격 불확실성 하의 투자결정 - 정부지원 10% 88
<그림 5-10> REC가격 불확실성 하의 투자결정 - 정부지원 20% 89
<그림 5-11> REC가격 불확실성 하의 투자결정 - 정부지원 30% 89
<그림 5-12> REC가격 불확실성 하의 투자결정 - 정부지원 40% 90
<그림 5-13> REC가격 불확실성 하의 투자결정 - 정부지원 50% 90

<그림 6-1> 대관령 풍력발전 노후화설비 교체에 따른 이해당사자 관계 ………… 96